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[1] We examine William Herschel’s hypothesis that solar-
cycle variation of the Sun’s irradiance has a modulating
effect on the Earth’s climate and that this is, specifically,
manifested as an anticorrelation between sunspot number
and the market price of wheat. Since Herschel first pro-
posed his hypothesis in 1801, it has been regarded with
both interest and skepticism. Recently, reports have been
published that either support Herschel’s hypothesis or rely
on its validity. As a test of Herschel’s hypothesis, we seek
to reject a null hypothesis of a statistically random corre-
lation between historical sunspot numbers, wheat prices in
London and the United States, and wheat farm yields in
the United States. We employ binary-correlation, Pearson-
correlation, and frequency-domain methods. We test our
methods using a historical geomagnetic activity index, well
known to be causally correlated with sunspot number. As
expected, the measured correlation between sunspot number
and geomagnetic activity would be an unlikely realization
of random data; the correlation is “statistically significant.”
On the other hand, measured correlations between sunspot
number and wheat price and wheat yield data would be
very likely realizations of random data; these correlations
are “insignificant.” Therefore, Herschel’s hypothesis must
be regarded with skepticism. We compare and contrast our
results with those of other researchers. We discuss proce-
dures for evaluating hypotheses that are formulated from
historical data. Citation: Love, J. J. (2013), On the insignifi-
cance of Herschel’s sunspot correlation, Geophys. Res. Lett., 40,
4171–4176, doi:10.1002/grl.50846.

1. Introduction
[2] William Herschel [1801] interpreted telescopic obser-

vations of the Sun in terms of solar meteorology. The
photosphere, he believed, was the top of luminous clouds
and sunspots were openings in the clouds. Therefore, vari-
ations in sunspots would correspond to variations in solar
irradiance which might affect the heating of the Earth’s
atmosphere and the Earth’s weather. Riccioli (Almagestum
Novum, 1651) and others had proposed similar hypothe-
ses, but Herschel took the idea one important step further:
he sought quantitative evidence, even if scarce and indi-
rect, that might support the hypothesis. The problem was
that Herschel was contemplating all of this decades before
Schwabe [1844] discovered the � 11-year solar-cycle wax-
ing and waning of sunspots and before Wolf took up his
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ambitious compilation of historical sunspot numbers. Still,
Herschel [1801] knew that sometimes the Sun had relatively
few or no spots and that this condition could persist for sev-
eral years: Flamsteed saw “no spot in the Sun” from 1677 to
1684; Cassini saw “no spot” from 1686 to 1688; etc., while
at other times, sunspots were clearly seen. As for terrestrial
meteorological data, Herschel lacked reliable measurements,
and so he considered a proxy. Reasoning that farm crop
yields would be correlated with temperature and that market
prices for crop products would be anticorrelated with yields,
he chose to analyze the London wheat price data compiled
in Adam Smith’s Wealth of Nations. Herschel found that
wheat prices during five durations of time with few sunspots
were high (inflated), while prices during five other durations
were low (deflated). From this, he suggested that dimin-
ished sunspot number might correspond to a “deficiency of
the solar beams.” In publishing his ideas, Herschel hoped to
motivate a broader discussion on the role played by the Sun
in affecting phenomena on the Earth.

[3] Subsequent analyses by reputable nineteenth century
scientists did not convincingly confirm the existence of a
correlation (or anticorrelation) between sunspots and wheat
prices [e.g., Carrington, 1863; Poynting, 1884]. Still, the
idea persisted, partly because of Herschel’s enormous rep-
utation, partly because a rigorous philosophy for statistical
hypothesis testing had yet to be developed, and partly
because it was simply so enticing. A correlation, if demon-
strated, would enable the prediction of crop yields and
product prices, possibly for financial gain. It is, therefore,
not surprising that the next influential proponent of a hypoth-
esis similar to Herschel’s was an economist: William Stan-
ley Jevons [1879] reported a correlation between sunspots
and wheat prices in India, to which he assigned elabo-
rate interpretations. But Jevons’s evident lack of objectiv-
ity was soon ridiculed [e.g., Proctor, 1880], and today,
while economists sometimes discuss a “sunspot effect,” it
is usually as an abstraction of the extrinsic variables that
contribute to a “market psychology” of uncertainty [e.g.,
Cass and Shell, 1983].

[4] The first clear evidence that specific terrestrial phe-
nomena can be affected by sunspots was obtained by Edward
Sabine [1856], who found a correlation between the solar
cycle and the occurrence of magnetic storms recorded at
ground-based observatories. Magnetic storms result from
the dynamic interaction of the solar wind with the cou-
pled magnetospheric-ionospheric system. Many storms are
caused by coronal mass ejections from active regions defined
by sunspots, but they can also be driven by high-speed
streams of plasma flowing from coronal holes that develop
during the declining phase of each solar cycle. While the
physics of the solar cycle and magnetic storms remains the
subject of active research, there is no doubt about the real-
ity of the causal relationship. Indeed, Sabine’s statistical
correlation has held up over the 14 solar cycles since he
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discovered it [e.g., Chapman and Bartels, 1962, chapter 11],
and it is one of the foundational principles of modern
operational “space weather” forecasting.

[5] In contrast, a relationship between the sunspot solar
cycle and terrestrial weather has been much more difficult
to detect [e.g., Meadows, 1975]. Herschel’s analysis on this
subject, if not exactly meeting modern standards, is cer-
tainly important in the historical evolution of ideas [e.g.,
Hoyt and Schatten, 1997; Bard and Frank, 2006; Benestad,
2006; Eddy, 2009]. Still, we know of only one recent crit-
ical analysis of Herschel’s hypothesis [Krut, 2008], while
numerous publications report what are seemingly statis-
tically significant correlations (or, sometimes, anticorrela-
tions) between sunspots and agricultural prices and crop
yields [e.g., King et al., 1974; Harrison, 1976; Vines,
1977; Legrand, 1977, 1978; Currie et al., 1993; Stanhill
and Cohen, 2001; Pustil’nik and Yom Din, 2004a, 2004b;
Garnett et al., 2006; Pustil’nik and Yom Din, 2009, 2013].
Herschel’s hypothesis is also often depicted as being essen-
tially factual in the popular literature [e.g., Clark, 2007;
Cohen, 2011]. Given the present situation, we are motivated
to conduct our own significance tests of Herschel’s hypoth-
esis. Results inform the wider and controversial subject of
the role played by the Sun and solar-terrestrial interaction
in affecting global climate change [e.g., Moore et al., 2006;
Gray et al., 2010; Love et al., 2011; Lockwood, 2012].

2. The Data and Their Preparation
[6] As Herschel understood it, sunspot number might be

used as a proxy measure of solar irradiance; for review of
this and other proxies, see Gray et al. [2010]. We use annual
mean international (Zurich or Wolf) relative sunspot number
RZ, covering years 1700–2012, or more than 28 solar cycles
up to the present rise phase of cycle 24. We obtained RZ from
the Royal Observatory of Belgium [e.g., Clette et al., 2007].
Prior to 1700 and during the Maunder Minimum in sunspot
number when systematic counts were not always made, we
use a list of year dates of solar-cycle minima and maxima
estimated from monthly sunspot numbers and records of
days with and without sunspots [Eddy, 1976], obtained from
NOAA’s National Geophysical Data Center.

[7] We compare sunspot numbers with the terrestrial data
summarized in Table 1. Of these, the most straightforward
comparison is between sunspots and geomagnetic activity.
The aa index [e.g., Mayaud, 1980], 1868–2012, measures
magnetic storm intensity and lower levels of global magnetic
field disturbance. Although geomagnetic activity is not the
type of solar-terrestrial effect that Herschel was contemplat-
ing in 1801, there is, today, a reasonably well-established
understanding of the relationship between sunspots and geo-
magnetic activity and, as such, a correlational analysis of RZ
and aa serves as a qualitative check of our analysis methods.
The aa index is derived from British and Australian mag-
netic observatory data; it can be obtained from the British
Geological Survey. We average the 3-h aa index values into
annual means.

[8] Following Herschel [1801], we analyze the market
price of wheat. We combine two London annual mean wheat
price lists, that of Smith [1776, Book I, chapter XI], of
prices paid at Windsor Market on Lady Day (25 March)
and Michaelmas (29 September) covering years 1646–1755
and a similar list compiled by Poynting [1884, Appendix,
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LOVE: HERSCHEL’S HYPOTHESIS

Table I] covering years 1756–1880. We combine two lists
of the monthly mean price paid for wheat of all types in the
United States: one from the National Bureau of Economic
Research (NBER, m04001a), 1842–1907, and one from the
Department of Agriculture (USDA), Economic Research
Service, 1908–2012. For comparison with the London list,
we extract the March and September data values from the
NBER and USDA lists and average them for each calen-
dar year. We also analyze a time series of wheat farm yield
(bushels per acre), obtained from the USDA for all types of
planted wheat, 1866–2012.

[9] For the positive definite data considered here, it is
convenient to analyze their logarithms, so, for example,
RZ ! log(RZ) [e.g., Chambers, 1886, p. 103]. Ratios of con-
secutive values of the untransformed data measure relative
change over time, equivalent to differences of consecu-
tive values of the log-transformed data. Long ago, Yule
[1926] noted that data sets with trends can give “non-
sense” measures of correlation. Advanced methods can
be used to accommodate nonstationary trends [e.g., Stern
and Kaufmann, 2000], but we prefer a simpler approach:
prior to calculating Pearson correlations and Lomb spectra,
we subtract a linear trend from the log-transformed data. For
the sunspot data, this removes a long-term drift that might
be described in terms of a random walk [Love and Rigler,
2012]. For the price data, this removes a constant rate of
inflation. For convenient comparison, we normalize for time
variation; we calculate the long-term mean � and variance
� 2 for each log-transformed data set; we plot, for example,
[log(RZ) – �]/� , which is nondimensional.

3. Qualitative Assessment
[10] In Figure 1a, we see right away that aa geomag-

netic activity lags behind but is otherwise correlated with
solar-cycle variation in sunspot number. This is as expected.
The wheat price and farm yield data are not, however,
obviously correlated (or anticorrelated) in any way with
sunspot number. Consider, for example, annual mean wheat
prices in London (Figure 1b). In seemingly agreement with
Herschel’s hypothesis, wheat prices are high when sunspot
numbers are low for years 1708–1714 and 1804–1816. But
selectively focussing attention on subsets of data that are
consistent with a hypothesis is not objective. It is useful
to intentionally look for periods of time that obviously do
not support Herschel’s hypothesis, such as 1723–1744 when
wheat prices are more correlated with sunspot numbers. In
an average sense, London wheat prices are not apparently
anticorrelated with solar-cycle variation of sunspots. Simi-
lar qualitative observations pertain to American wheat prices
(Figure 1c) and to American wheat farm yields (Figure 1d).

4. Binary Tests
[11] Herschel [1801, pp. 314–316] used binary statistics

in his analysis. He formed ratios of the average price of
wheat for durations of time when the Sun had relatively
few spots, divided by the average price for neighboring
durations when the Sun seemed to have a more typical num-
ber of spots. This simple approach is attractive because it
effectively removes long-term trends in the historical price
of wheat that are affected by changing economic condi-
tions, evolving farming methods, etc. We follow Herschel’s
method. We compare annual means of geomagnetic activity,

wheat price, and farm yield for the years of solar-cycle mini-
mum (maximum) with annual values for the following solar-
cycle maximum (minimum). In Table 1, we denote these
comparisons as “MinMax” (“MaxMin”). Considering, first,
aa geomagnetic activity, 1868–2012, there are 11 MinMax
increases (12 MaxMin decreases) in activity but only 1 Min-
Max decrease (1 MaxMin decrease). These realizations are
not what would be expected for random binary “coin flip”
trials. More objectively, we can estimate a significance prob-
ability using a null hypothesis binomial model. Assuming,
for example, that the probability of a decrease or increase
is 0.5 (binary), then the aa MinMax “p(I)-value” probabil-
ity that 11 or more activity increases would be realized in
11 + 1 = 12 trials is only 0.0031; the complementary p(D)-
value that 1 or more activity decreases would be realized in
1+11 = 12 trials is 0.9997. These probabilities are consistent
with the known physical relationship between sunspot num-
ber and geomagnetic activity, and they give us confidence in
the validity of our evaluation method.

[12] Herschel’s hypothesis would predict MinMax Lon-
don wheat price decreases (MaxMin increases), but for the
entire duration for which we have London data, 1646–1880,
MinMax (MaxMin) has 11 decreases and 9 increases (10
increases and 11 decreases). These are about what we might
expect for the random binary null hypothesis: the London
wheat MinMax “p(D)-value” probability that 11 or more
price decreases would be realized in 11 + 9 = 20 trials is
0.4119; the p(I)-value that 9 or more price increases would
be realized in 9 + 11 = 20 trials is 0.7482. These proba-
bilities are not small. Similarly, the London wheat MaxMin
p-values are not small. Therefore, the null hypothesis of
randomness cannot be rejected. Herschel’s hypothesis of a
statistical relationship between sunspot number and the price
of wheat in London is not seemingly supported by binary
tests of the data. On the other hand, there appear (at first)
to be significant MaxMin increases in American wheat farm
yields from solar-cycle maximum to minimum, p(I)=0.0112.
Interestingly, this is actually the opposite of what Herschel
hypothesized for British farms, where he thought yields
would follow terrestrial temperature and be correlated with
sunspot number. But before we entertain a new hypoth-
esis, we note that MinMax decreases in American wheat
farm yield are not significant, p(D)=0.7094. This inconsis-
tency has a simple and plausible explanation: random data
will occasionally give small p-value measures of statistical
significance. This is why we analyze more than one data set.

5. Pearson Correlation Tests
[13] Pearson’s r coefficient is a conventional metric of

cross-correlation between two time series [e.g., Press et al.,
1992, chapter 14.5], but the estimation of its statistical sig-
nificance requires care [e.g., von Storch, 1995]. In Table 1,
we list r-values for cross-correlation between sunspot num-
ber and terrestrial data. The aa geomagnetic activity time
series (log transformed and detrended), 1868–2012, has r =
0.6898. A p-value measure of significance can be calcu-
lated assuming that the N = 145 annual mean values give
r-values that have a null hypothesis Gaussian distribution.
With p(N) < 0.0001, the measured correlation would be
an unlikely realization of the null hypothesis, but before
jumping to conclusions, we should accommodate for auto-
correlation in the data. In Table 1, we list 1-year lagged
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Figure 1. Detrended and variance-normalized time series of sunspot number RZ (black) and (a) the aa geomagnetic activity
index (1868–2012, red), (b) the London (1646–1880, orange) and (c) American (1842–2012, green) wheat price, and (d)
American wheat farm yield (1866–2012, blue).

autocorrelations r1 for each time series. Positive r1-values
correspond to annual means that are partially redundant—
the data are not statistically independent. This means that
the information content of the time series could be “effec-
tively” contained in a number of data Ne that is smaller than
the number of annual mean values, Ne/N = (1 – r1)/(1 + r1)
[e.g., Priestley, 1981, chapter 5.3.2]. After averaging the
effective data numbers for each time series, we recalculate
the cross-correlational p-values. For aa geomagnetic activ-
ity, p(Ne) = 0.0001, which is, still, a small probability.
A better approximation for effective data number, appro-
priate for an oscillatory time series, can be obtained with
a second-order autoregressive model [e.g., Thiébaux and
Zwiers, 1984], but we prefer a more straightforward estimate
of effective data number, one that is directly motivated by
the theme of our analysis. The number of data Nes that would
effectively represent possible modulation of annual mean
wheat prices and farm yields across a sequence of solar-cycle
minima and maxima is given by an effective Nyquist num-
ber: Nes/N = 2/Ts, where Ts is the �11-year length of the
solar cycle (measured in years). For aa geomagnetic activ-
ity, p(Nes) < 0.0001, a small probability. The correlation
between sunspots and geomagnetic activity is “effectively”
statistically significant.

[14] In contrast to the geomagnetic data, our evaluations
for correlations of sunspot number with wheat price and
farm yield are very different. For 1700–1880, the wheat

price data have r = –0.2741 and an unadjusted p(N) <
0.0001, but the effective p(Nes) = 0.1232 is not a small
probability. More generally, for all of the wheat data, all
of the effective p-values are relatively large. Therefore, our
evaluations using Pearson r are consistent with the binary
tests in section 4: an anticorrelation between sunspot number
and the London price of wheat is statistically insignifi-
cant. Furthermore, independent of the sunspot correlations
listed in Table 1, American wheat farm yields and wheat
prices are not, themselves, anticorrelated, they are corre-
lated, r = 0.4454, although with correction for r1 autocorre-
lation, this is not especially significant, p(Ne) = 0.1269. As
Carrington [1863] and Poynting [1884] long ago empha-
sized, and as even Herschel [1801, p. 313] acknowledged,
the price of wheat is not a simple inverse function of farm
yield. Not surprisingly, a myriad of interacting factors deter-
mine the price of wheat. This means that the string of
seemingly logical associations that led Herschel [1801] to
hypothesize an anticorrelation between sunspots and the
price of wheat is not supported by the American data.

6. Frequency-Domain Tests
[15] We have, so far, focussed on the statistical signifi-

cance of correlations between sunspots and terrestrial data,
but we can also consider the properties of each individ-
ual data time series. We choose to examine the discrete
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Figure 2. Lomb power spectra for sunspot number RZ (black), aa geomagnetic activity index (red), American wheat price
(green), and American wheat farm yield (blue). Based on data for the common interval 1868–2012.

frequency-domain power spectrum of each data set. For this,
we detrend each data set, apply a Hamming window, and use
a Lomb periodogram algorithm, which normalizes spectral
power by the time-domain variance of the data [e.g., Press
et al., 1992, chapter 13.8]. Spectra for annual sunspot num-
ber and the terrestrial data are shown in Figure 2, in each
case, calculated for a common overlap duration of 1868–
2012. Both the sunspot data and the aa geomagnetic activity
data show prominent (and expected) spectral peaks at about
11 years. The “significance” of these peaks can be estimated
by assuming that the individual Fourier power values (one
for each discrete frequency) have a null hypothesis expo-
nential distribution [e.g., Scargle, 1982]. The probabilities
for random data to have spectral amplitudes exceeding those
actually observed at solar-cycle periods are small: p(RZ) �
0.0001; p(aa) = 0.0004. On the other hand, � 11-year solar-
cycle variation is not obviously present in the wheat price
and farm yield data; their p-values are all approximately
unity. Therefore, the fundamental time behavior of sunspot
number—the solar cycle—is not detectable with any reason-
able level of confidence in these data. This means that among
other things, introducing time lags between the (detrended)
sunspot and wheat data will not lead to statistically signifi-
cant Pearson correlations.

7. Contrast With Previous Analyses
[16] Our finding that Herschel’s hypothesis is statistically

insignificant is consistent with that of Krut [2008], who used
a binomial sign test in his examination of American wheat
price and farm yield data. On the other hand, our results
stand in curious juxtaposition with the reports of Pustil’nik
and Yom Din [2004a, 2004b, 2009, 2013]. They cited
Herschel [1801] as motivation for their analyses. How-
ever, they identified a seemingly significant tendency for
increases in American wheat prices from solar-cycle min-
imum to subsequent maximum (MinMax, cycles 15–22,
years 1913–1989), the opposite of the relationship suggested
by Herschel. We have reproduced the one-sided Student t
test significance probability reported by Pustil’nik and Yom
Din [2004b, pp. 479–480] that was based on USDA wheat
price data, p = 0.0335. But when we add USDA data for
cycle 23, 1996–2000, and earlier NBER wheat price data,
cycles 9–14, 1843–1907, we obtain a much larger prob-
ability, p = 0.2907. Since Pustil’nik and Yom Din were
not apparently testing a hypothesis corresponding exactly
to Herschel’s MinMax price decreases, but were, it seems,

open to consideration of a separate hypothesis for MinMax
increases, it is more reasonable to use a two-sided t test. This
doubles the probability to p = 0.5814, which is not small
and certainly not indicative of a statistically significant rela-
tionship between sunspot number and the American price of
wheat. In a different study, Pustil’nik and Yom Din [2004a,
pp. 347–350] performed an interval analysis on “bursts”
in wheat prices. These intervals were derived using an 11-
year filter, and so their statistical comparison with the actual
distribution of solar-cycle durations was, at least partially,
predetermined. We regard the results of Pustil’nik and Yom
Din with skepticism.

[17] With respect to other published results that seem to
support Herschel’s hypothesis, those of Vines [1977] and
Currie et al. [1993] are certainly worthy of comment. They
identified � 11-year solar-cycle periodicities in data record-
ing wheat, oat, and wine harvests, fish catches, rainfall, and
sea level; related results have also been published and fre-
quently cited [e.g., Currie, 1974; Vines, 1982; Currie and
Fairbridge, 1985]. Our results (Figure 2) contradict theirs.
We speculate that the heavy filtering that Vines [1977] and
Currie et al. [1993] applied to the data prior to spectrum esti-
mation might have predetermined their results. We regard
their results with skepticism.

8. The Past and the Future
[18] In controlled laboratory settings, a hypothesis, once

clearly stated, can be tested by using it to predict the future
and, then, prospectively collecting new data that can be com-
pared against the prediction. If the prediction is deemed to
be statistically significant, then the null hypothesis can be
rejected. This approach works in some natural settings when
the phenomenon of interest evolves relatively rapidly over
time and new data can be collected without having to wait
too long. But for evaluation of climatological hypotheses,
decades of future data might be required before prospective
significance tests can be made. Alternatively, a hypotheses
can be tested by reserving a subset of the available data—a
subset that is not seen when the hypothesis is developed—
and, then, once the hypothesis is stated, these reserve data
can be used for objective testing.

[19] In this context, let us consider Herschel’s hypothe-
sis. All of the data Herschel discussed in his 1801 paper
were collected prior to 1717, during the Maunder Minimum
and long before his paper was published. His identifica-
tion of five durations of time with few sunspots and inflated
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wheat prices and five other durations that might have had
sunspots and which had deflated prices [Herschel, 1801,
pp. 313-316] would be an unlikely realization of binary
statistics, but it is not clear whether or not Herschel was
inspired to state his hypothesis after inspection of these data.
Having said this, Herschel acknowledged that predictions
based on his hypothesis “ought not be relied on by any one,
with more confidence than the arguments ... may appear
to deserve” [Herschel, 1801, p. 318]. Today, we have con-
siderably more data than were available to Herschel; these
were collected both before and after he stated his hypothesis,
and they can be used for both retrospective and prospec-
tive testing. For London wheat prices both before 1801
and, separately, after 1802, binary significance probabilities
and Pearson correlations and their effective probabilities are
summarized in Table 1. None of these are indicative of sta-
tistical significance. While solar irradiance may affect global
climate, from our analysis of data of the type considered by
Herschel, we conclude that historical wheat prices are not
demonstrably useful for inferring past sunspot numbers, and,
conversely, sunspot numbers are not demonstrably useful for
predicting future wheat prices.
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